PHAX Products
A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus. Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner . Plays also a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Binds also to telomerase RNA
Show More
40 results for "PHAX" in Products
40 results for "PHAX" in Products
PHAX Products
A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus. Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner . Plays also a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Binds also to telomerase RNA
Show More
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | IHC, ICC/IF |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, ICC/IF |
Applications: | WB, ELISA, MA, AP, PAGE |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB |
Reactivity: | Human |
Details: | Rabbit Polyclonal |
Applications: | WB |
Reactivity: | Human |
Details: | Rabbit Polyclonal |
Applications: | WB |
Reactivity: | Human |
Details: | Rabbit Polyclonal |
Applications: | WB |
Applications: | WB |
Applications: | AC |
Applications: | AC |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Applications: WB, IP
Reactivity:
Human,
Mouse
Reactivity: | Human, Mouse |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |