Skip to main content

CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

Novus Biologicals, part of Bio-Techne | Catalog # NB100-64849MFV450

Novus Biologicals, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
NB100-64849MFV450

Key Product Details

Species Reactivity

Validated:

Human

Applications

Flow Cytometry, Immunohistochemistry, Immunohistochemistry-Frozen, Immunohistochemistry-Paraffin, Immunoprecipitation

Label

mFluor Violet 450 SE (Excitation = 406 nm, Emission = 445 nm)

Antibody Source

Monoclonal Mouse IgG2A Clone # BNI3

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Product Summary for CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

Immunogen

Human CTLA-4/human IgG heavy chain fusion protein

Specificity

NB100-64849 recognizes the human CD152 cell surface antigen, also known as CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4). CD152 is a 45kD glycoprotein, expressed normally as a disulphide-linked homodimer. It is expressed transiently on the surface of T cells following activation (peaking at 3 days), but is often present with the cytoplasm. CD152 is a ligand for CD80 and CD86, and is important in cellular interactions during the immune response.

Clonality

Monoclonal

Host

Mouse

Isotype

IgG2A

Scientific Data Images for CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE] [NB100-64849MFV450] -

CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE] [NB100-64849MFV450] - Vial of mFluor Violet 450 conjugated antibody. mFluor Violet 450 is optimally excited at 406 nm by the Violet laser (405 nm) and has an emission maximum of 445 nm.

Applications for CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

Application
Recommended Usage

Flow Cytometry

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry-Frozen

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry-Paraffin

Optimal dilutions of this antibody should be experimentally determined.

Immunoprecipitation

Optimal dilutions of this antibody should be experimentally determined.
Application Notes
Optimal dilution of this antibody should be experimentally determined.
Please Note: Optimal dilutions of this antibody should be experimentally determined.

Formulation, Preparation, and Storage

Purification

Protein A or G purified

Formulation

50mM Sodium Borate

Preservative

0.05% Sodium Azide

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at 4C in the dark.

Background: CTLA-4

Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), also known as CD152, is a cell surface glycoprotein belonging to the immunoglobulin family with a role in regulation of T cell activation (1). Human CTLA-4 is a 223 amino acid (aa) protein with a theoretical molecular weight of 24.6 kDa containing a leader peptide, a IgV-like domain, a transmembrane domain, and a cytoplasmic tail (1,2). CTLA-4 is both structurally and functionally related with another member of the immunoglobulin-related receptor family, CD28 (1-3). CTLA-4 and CD28 receptors are both expressed by CD4+ and CD8+ T cells and share two common ligands, CD80 (B7.1) and CD86 (B7.2), expressed on the surface of antigen presenting cells (APCs) (2,3). While CD28 is present on the plasma membrane of T cells, CTLA-4 is predominantly expressed intracellularly on vesicles in FoxP3+ regulatory T (Treg) cells and activated T cells due to endocytosis (3). While they share ligands, the two receptors have opposing functions in T cell activation; CD28 is involved in activation of T cells, while CTLA-4 functions as a negative regulator of T cell response (2,3). One of the primary functions of CTLA-4 is preventing autoimmunity (1-4).

Similar to programmed cell death protein 1 (PD-1), CTLA-4 is an inhibitory immune checkpoint protein (3,5). Checkpoint blockade immunotherapy using drugs or antibodies to target CTLA-4 is one of the main approaches for cancer treatment (5). A number of drugs targeting CTLA-4, or a combination of CTLA-4/PD-1, have been approved for treatment of various cancers like melanoma, renal cell carcinoma, and colorectal cancer (5). While blocking CTLA-4 in the tumor microenvironment is a promising cancer therapeutic, the absence of CTLA-4 under normal conditions can have deleterious effects. Studies have found that patients with CTLA-4 deficiency or mutations have clinical features associated with autoimmunity and immune dysregulation (4). Treatment options for CTLA-4 deficiency includes immunoglobulin-replacement therapy, corticosteroids, CTLA-4-immunoglobulin (Ig) fusion protein, and, in life-threatening cases, hematopoietic stem cell transplantation (4,6). Additionally, engaging CD80/CD86 with CTLA-4-Ig is a common immunosuppressive treatment for rheumatoid arthritis and kidney transplant recipients (6).

References

1. Romo-Tena, J., Gomez-Martin, D., & Alcocer-Varela, J. (2013). CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmunity reviews, 12(12), 1171-1176. https://doi.org/10.1016/j.autrev.2013.07.002

2. Hosseini, A., Gharibi, T., Marofi, F., Babaloo, Z., & Baradaran, B. (2020). CTLA-4: From mechanism to autoimmune therapy. International immunopharmacology, 80, 106221. https://doi.org/10.1016/j.intimp.2020.106221

3. Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018). CTLA-4: a moving target in immunotherapy. Blood, 131(1), 58-67. https://doi.org/10.1182/blood-2017-06-741033

4. Verma, N., Burns, S. O., Walker, L., & Sansom, D. M. (2017). Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clinical and experimental immunology, 190(1), 1-7. https://doi.org/10.1111/cei.12997

5. Rotte A. (2019). Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of experimental & clinical cancer research : CR, 38(1), 255. https://doi.org/10.1186/s13046-019-1259-z

6. Bluestone, J. A., St Clair, E. W., & Turka, L. A. (2006). CTLA4Ig: bridging the basic immunology with clinical application. Immunity, 24(3), 233-238. https://doi.org/10.1016/j.immuni.2006.03.001

Long Name

Cytotoxic T-lymphocyte-associated Molecule 4

Alternate Names

CD152, CTLA4

Gene Symbol

CTLA4

Additional CTLA-4 Products

Product Documents for CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for CTLA-4 Antibody (BNI3) [mFluor Violet 450 SE]

mFluor(TM) is a trademark of AAT Bioquest, Inc. This conjugate is made on demand. Actual recovery may vary from the stated volume of this product. The volume will be greater than or equal to the unit size stated on the datasheet.

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...