Skip to main content

SARS-CoV-2 Spike S1 Antibody

Novus Biologicals, part of Bio-Techne | Catalog # NBP3-20226

Novus Biologicals, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
NBP3-20226

Key Product Details

Species Reactivity

SARS-CoV-2

Applications

Peptide ELISA, Western Blot

Label

Unconjugated

Antibody Source

Polyclonal Goat IgG

Concentration

0.5 mg/ml

Product Specifications

Immunogen

Peptide with sequence C-14 aa long, S1 domain of spike protein, from the internal region of the protein sequence according to NC_045512.2; MN908947.

Reactivity Notes

Expected from sequence similarity: Human Coronavirus

Clonality

Polyclonal

Host

Goat

Isotype

IgG

Scientific Data Images for SARS-CoV-2 Spike S1 Antibody

Western Blot: SARS-CoV-2 Spike S1 Antibody [NBP3-20226]

Western Blot: SARS-CoV-2 Spike S1 Antibody [NBP3-20226]

Western Blot: SARS-CoV-2 Spike S1 Antibody [NBP3-20226] - Anti SARS-CoV-2 spike protein S1 domain staining of recombinant S1 protein (1 ug/ml). Detected by chemiluminescence.

Applications for SARS-CoV-2 Spike S1 Antibody

Application
Recommended Usage

Peptide ELISA

Detection limit 1:32000

Western Blot

0.5-1 ug/ml
Application Notes
Western blot: Approx. 130kDa band observed in recombinant SARS-CoV2 spike protein S1 domain. Primary incubation 1 hour at room temperature.

Formulation, Preparation, and Storage

Purification

Immunogen affinity purified

Formulation

PBS, pH7.3

Preservative

0.02% Sodium Azide

Concentration

0.5 mg/ml

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at -20C. Avoid freeze-thaw cycles.

Background: SARS-CoV-2 Spike S1

The SARS-CoV-2 Spike protein is one of the four major structural proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 (1,2). The spike protein is the largest of the structural proteins, which also include the membrane (M), envelope (E), and nucleocapsid (N) proteins (1,2). The SARS-CoV-2 spike protein is a 1273 amino acid (aa) heterotrimeric class I fusion protein with each monomer having a theoretical molecular weight of approximately 180 kDa (1). The club-shaped spike protein contains several functional regions and domains including the S1 globular head region which contains the N-terminal receptor-binding domain (RBD) and the S2 stem region that contains the C-terminal fusion domain, two heptad regions, a transmembrane domain, and a cytoplasmic tail (1,2). The viral spike protein is critical for attachment of the virus with the host cell, resulting in fusion and virus entry into the cell (1,2). More specifically, the RBD of the spike protein is responsible for binding to the cell surface receptor angiotensin converting enzyme 2 (ACE2) (1,2). This spike-ACE2 interaction results in a conformational change permitting furin cleavage between the S1 and S2 domains and then cleavage at S2' by TMPRRS2, or another protease, allowing membrane fusion (1,2).

Given the critical role of the spike protein RBD in the interaction with the ACE2 receptor and viral entry, a number of neutralizing antibodies against the RBD have been developed as potential therapeutics for treating COVID-19 (3). These antibodies bind the RBD domain on the S1 subunit inhibiting the interaction with ACE2 (3). However, more studies need to be done as neutralizing antibodies can result in antibody-dependent enhancement, in which the viral entry and replication within the host cell is increased (4). One potential way to combat antibody-dependent enhancement is the use of nanobodies (4). Furthermore, there are currently several vaccine strategies that are in clinical trials, or recently federally approved, that utilize the spike protein in different forms (e.g. full length, S1 RBD, RBD-Fc, N-terminal) for protecting against SARS-CoV-2 infection (4,5). These vaccine strategies include DNA vaccines, viral vector-based vaccines, RNA vaccines, and subunit vaccines (4,5).

References

1. Pillay T. S. (2020). Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. Journal of Clinical Pathology. https://doi.org/10.1136/jclinpath-2020-206658

2. Malik Y. A. (2020). Properties of Coronavirus and SARS-CoV-2. The Malaysian Journal of Pathology.

3. Ho M. (2020). Perspectives on the development of neutralizing antibodies against SARS-CoV-2. Antibody Therapeutics. https://doi.org/10.1093/abt/tbaa009

4. Samrat, S. K., Tharappel, A. M., Li, Z., & Li, H. (2020). Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research. https://doi.org/10.1016/j.virusres.2020.198141

5. Sternberg, A., & Naujokat, C. (2020). Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sciences. https://doi.org/10.1016/j.lfs.2020.118056

Alternate Names

SARS-CoV-2

Gene Symbol

S

Additional SARS-CoV-2 Spike S1 Products

Product Documents for SARS-CoV-2 Spike S1 Antibody

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for SARS-CoV-2 Spike S1 Antibody

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...