Skip to main content

TLR3 Antibody (CNTO5429) [CoraFluor™ 1]

Novus Biologicals, part of Bio-Techne | Catalog # NBP3-28194CL1

Recombinant Monoclonal Antibody
Novus Biologicals, part of Bio-Techne

Key Product Details

Species Reactivity

Human

Applications

ELISA, Flow Cytometry, Functional

Label

CoraFluor 1

Antibody Source

Recombinant Monoclonal Human IgG2 Clone # CNTO5429

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Product Specifications

Immunogen

TLR3 / CD283

Clonality

Monoclonal

Host

Human

Isotype

IgG2

Description

CoraFluor(TM) 1 is a high performance terbium-based TR-FRET (Time-Resolved Fluorescence Resonance Energy Transfer) or TRF (Time-Resolved Fluorescence) donor for high throughput assay development. CoraFluor(IM) 1 absorbs UV light at approximately 340 nm, and emits at approximately 490 nm, 545 nm, 585 nm and 620 nm. It is compatible with common acceptor dyes that absorb at the emission wavelengths of CoraFluor(TM) 1. CoraFluor(TM) 1 can be used for the development of robust and scalable TR-FRET binding assays such as target engagement, ternary complex, protein-protein interaction and protein quantification assays.

Applications for TLR3 Antibody (CNTO5429) [CoraFluor™ 1]

Application
Recommended Usage

ELISA

Optimal dilutions of this antibody should be experimentally determined.

Flow Cytometry

Optimal dilutions of this antibody should be experimentally determined.

Functional

Optimal dilutions of this antibody should be experimentally determined.
Application Notes
Optimal dilution of this antibody should be experimentally determined.

Formulation, Preparation, and Storage

Purification

Protein A purified

Formulation

PBS

Preservative

No Preservative

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at 4C in the dark. Do not freeze.

Background: TLR3

Toll-like receptor 3 (TLR3) is a type I transmembrane glycoprotein that contributes to the innate immune response, recognizing distinct pathogen-associate molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) (1,2). The TLR family member TLR3 specifically recognizes and binds double-stranded RNA (dsRNA) from viruses and the synthetic analog polyriboinosinic:polyribocytidylic acid (poly(I:C)) (1-5). TLR3 is typically expressed in the endosomes of innate immune cells including macrophages, natural killer (NK) cells, and dendritic cells (DCs) (1-5). TLR3 is also localized on the cell surface of fibroblasts, epithelial cells, and vascular endothelial cells (1-5). The human TLR3 protein is 904 amino acids (aa) in length with a theoretical molecular weight (MW) of 104 kDa (6). It consists of a 23 aa signal sequence, a horseshoe-shaped 681 aa extracellular domain (ECD) containing 23 leucine-rich repeats (LRRs), a 21 aa helical transmembrane domain, and a 179 aa cytoplasmic region containing a Toll/IL-1 receptor (TIR) domain (1,6). Upon ligand binding, TLR3-ECD dimerizes and the adapter protein TIR-domain-containing adapter inducing interferon-beta (TRIF/TICAM1) is recruited (1-5). TRIF interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) and TRAF6 and results in a signal transduction cascade involving activation of transcription factors interferon regulatory factor 3 (IRF3), IRF7, nuclear factor-kappaB (NF-kappaB), and activation protein-1 (AP-1) (1-5). Transcription factors translocate to the nucleus, driving type I interferon (IFN) production, secretion of pro-inflammatory cytokines, and tumor regression (1-5). Furthermore, TRIF can also interact with receptor-interacting serine-threonine kinase 1 (RIP1) and RIP3 leading to reactive oxygen species (ROS) production and apoptosis (1,2,5). Conversely, NF-kappaB transcription can also promote chemokine production and promote the WNT pathway associated with stemness and pro-tumorigenic properties (1,5).

Given the role of TLR3 in immune response, its expression or dysfunction has been associated with a number of pathologies from chronic inflammation to autoimmune disorders and cancer (1-5,7). TLR3 is expressed in many cancer types, often related to viral infection, such as cervical cancer, hepatocellular carcinoma (HCC), melanoma, breast cancer, and prostate cancer (1,5). TLR3 signaling has a dual role in cancer, either contributing to pro- or anti-tumor properties depending on the type of cancer (1,5). Therapeutic targeting the TLR3 signaling pathway is under investigation. TLR3 inhibitors or antagonists are being studied for the treatment autoimmune and inflammatory disorders such as of sepsis and atherosclerosis (2,8). TLR3 agonists, either alone or in combination with immune checkpoint inhibitors or therapeutic agents, are being studied as immunotherapeutic treatments of many cancers such as colorectal cancer, prostate cancer, and melanoma (7).

References

1. Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol. 2021;12:667454. https://doi.org/10.3389/fimmu.2021.667454

2. Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ. 2022;S1443-9506(22)00080-4. https://doi.org/10.1016/j.hlc.2022.02.012

3. Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther. 2017;18(10):747-756. https://doi.org/10.1080/15384047.2017.1373220

4. Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008;60(7):805-812. https://doi.org/10.1016/j.addr.2007.11.005

5. Muresan XM, Bouchal J, Culig Z, Soucek K. Toll-Like Receptor 3 in Solid Cancer and Therapy Resistance. Cancers (Basel). 2020;12(11):3227. https://doi.org/10.3390/cancers12113227

6. Uniprot (O15455)

7. Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology. 2020;9(1):1771143. https://doi.org/10.1080/2162402X.2020.1771143

8. Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol. 2017;8:508. https://doi.org/10.3389/fphys.2017.00508

Long Name

Toll-like Receptor 3

Alternate Names

CD283

Gene Symbol

TLR3

Additional TLR3 Products

Product Documents for TLR3 Antibody (CNTO5429) [CoraFluor™ 1]

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for TLR3 Antibody (CNTO5429) [CoraFluor™ 1]

CoraFluor (TM) is a trademark of Bio-Techne Corp. Sold for research purposes only under agreement from Massachusetts General Hospital. US patent 2022/0025254

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...