Skip to main content

xCT Antibody [Alexa Fluor® 488]

Novus Biologicals, part of Bio-Techne | Catalog # NB300-317AF488

Novus Biologicals, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
NB300-317AF488

Key Product Details

Species Reactivity

Validated:

Human, Mouse, Rat

Applications

Flow Cytometry, Immunoblotting, Immunocytochemistry/ Immunofluorescence, Immunohistochemistry, Immunohistochemistry-Frozen, Immunohistochemistry-Paraffin, Simple Western, Western Blot

Label

Alexa Fluor 488 (Excitation = 488 nm, Emission = 515-545 nm)

Antibody Source

Polyclonal Rabbit IgG

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Product Summary for xCT Antibody [Alexa Fluor® 488]

Immunogen

This xCT Antibody was prepared from a synthetic peptide made to a region within the N-terminus of the mouse xCT protein (between residues 1-50).

Reactivity Notes

Immunogen displays the following percentage of sequence identity for non-tested species: orangutan (82%). Mouse reactivity reported in scientific literature (PMID: 30279737).

Clonality

Polyclonal

Host

Rabbit

Isotype

IgG

Theoretical MW

55 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.

Applications for xCT Antibody [Alexa Fluor® 488]

Application
Recommended Usage

Flow Cytometry

Optimal dilutions of this antibody should be experimentally determined.

Immunoblotting

Optimal dilutions of this antibody should be experimentally determined.

Immunocytochemistry/ Immunofluorescence

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry-Frozen

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry-Paraffin

Optimal dilutions of this antibody should be experimentally determined.

Simple Western

Optimal dilutions of this antibody should be experimentally determined.

Western Blot

Optimal dilutions of this antibody should be experimentally determined.
Application Notes
Optimal dilution of this antibody should be experimentally determined.
Please Note: Optimal dilutions of this antibody should be experimentally determined.

Formulation, Preparation, and Storage

Purification

Immunogen affinity purified

Formulation

50mM Sodium Borate

Preservative

0.05% Sodium Azide

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at 4C in the dark.

Background: xCT/SLC7A11

xCT, also called SLC7A11, is the light chain component of the cysteine/glutamate amino acid exchange transporter system Xc (1,2). System Xc is composed of two subunits, the light chain (xCT) and the heavy chain (CD98hc, SLC3A2) and functions by cellular uptake of cysteine in exchange for glutamate in a 1:1 ratio (1,2). The human xCT gene is located on chromosome 4q28.3 and is synthesized as a 12-pass transmembrane protein with both the N- and C-terminals located intracellularly (2, 3). xCT is a 501 amino acids (aa) protein with a theoretical molecular weight of 55.4 kDa (3, 4). xCT expression serves many functional purposes in cells including redox balance, ferroptosis, and chemotherapy or cancer drug resistance (1-3, 5-7). Import of cysteine by xCT plays a role in promoting oxidative stress response as cysteine is a precursor for glutathione synthesis (2, 3, 5-7). Glutathione is a cofactor for ROS-detoxifying enzymes, including glutathione peroxidase (GPX), which help defend from cellular ROS-induced damage (2, 3, 5-7). In addition to its antioxidant role, xCT also utilizes glutathione and GPX to inhibit ferroptosis, which is iron-dependent, non-apoptotic cell-death that occurs with overproduction of lipid hydroperoxides (1-3, 5-7). As cancer cells often experience high oxidative stress, it is understandable that xCT is overexpressed in a variety of cancer types, such as acute myeloid leukemia and breast cancer, and affects cancer growth, invasion, metastasis, and prognosis (1-3, 5-7). xCT expression has also been shown to play a role in glutathione-mediated drug resistance during cancer treatment (1,5,7). However, studies have shown that xCT knockdown results in increased tumor cell death, highlighting its suitability as a druggable target (1,5,7). Specifically, the xCT inhibitors Sulfasalazine, an approved anti-inflammatory drug, and Erastin, a small molecule inhibitor, are potential therapeutic modalities for treating a variety of cancers when used in combination with radiotherapy or immunotherapy (1-3, 5-7).

References

1. Liu, J., Xia, X., & Huang, P. (2020). xCT: A Critical Molecule That Links Cancer Metabolism to Redox Signaling. Molecular therapy : the journal of the American Society of Gene Therapy. https://doi.org/10.1016/j.ymthe.2020.08.021

2. Koppula, P., Zhang, Y., Zhuang, L., & Gan, B. (2018). Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer communications. https://doi.org/10.1186/s40880-018-0288-x

3. Lin, W., Wang, C., Liu, G., Bi, C., Wang, X., Zhou, Q., & Jin, H. (2020). SLC7A11/xCT in cancer: biological functions and therapeutic implications. American journal of cancer research.

4. xCT: Uniprot (Q9UPY5)

5. Koppula, P., Zhuang, L., & Gan, B. (2020). Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein & cell. https://doi.org/10.1007/s13238-020-00789-5

6. Liu, L., Liu, R., Liu, Y., Li, G., Chen, Q., Liu, X., & Ma, S. (2020). Cystine-glutamate antiporter xCT as a therapeutic target for cancer. Cell biochemistry and function. https://doi.org/10.1002/cbf.3581

7. Cui, Q., Wang, J. Q., Assaraf, Y. G., Ren, L., Gupta, P., Wei, L., Ashby, C. R., Jr, Yang, D. H., & Chen, Z. S. (2018). Modulating ROS to overcome multidrug resistance in cancer. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. https://doi.org/10.1016/j.drup.2018.11.001

Long Name

Cationic 1/Solute Carrier Family 7 Member 11

Alternate Names

CCBR1, SLC7A11

Gene Symbol

SLC7A11

Additional xCT/SLC7A11 Products

Product Documents for xCT Antibody [Alexa Fluor® 488]

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for xCT Antibody [Alexa Fluor® 488]

Alexa Fluor (R) products are provided under an intellectual property license from Life Technologies Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: (i) in manufacturing; (ii) to provide a service, information, or data in return for payment; (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@lifetech.com. This conjugate is made on demand. Actual recovery may vary from the stated volume of this product. The volume will be greater than or equal to the unit size stated on the datasheet.

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...