Skip to main content

Recombinant Human HGFR/c-MET Fc Chimera His-tag Protein Best Seller

R&D Systems, part of Bio-Techne | Catalog # 358-MT

R&D Systems, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
Carrier Free
358-MT-100/CF

Catalog #
Availability
Size / Price
Qty
With Carrier
358-MT-100

Key Product Details

Source

NS0

Accession #

Structure / Form

Tetramer containing two disulfide-linked proteolytically cleaved alpha and beta subunits

Conjugate

Unconjugated

Applications

Binding Activity

Product Specifications

Source

Mouse myeloma cell line, NS0-derived human HGF R/c-MET protein
HGF R alpha
(Glu25-Arg307)
Accession # P08581
HGF R beta
(Ser308-Thr932)
Accession # P08581
HIEGRMD Human IgG1
(Pro100-Lys330)
6 His tag
N-terminus C-terminus

Purity

>95%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Endotoxin Level

<0.10 EU per 1 μg of the protein by the LAL method.

N-terminal Sequence Analysis

Glu25 & Ser308

Predicted Molecular Mass

32.5 kDa (alpha chain), 96.7 kDa (beta chain)

SDS-PAGE

43-50 kDa (alpha chain) and 120-125 kDa (beta chain), reducing conditions

Activity

Measured by its ability to bind rhHGF in a functional ELISA with an estimated
Kd <0.5 nM.

Reviewed Applications

Read 1 review rated 5 using 358-MT in the following applications:

Formulation, Preparation and Storage

Carrier Free
What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

Carrier: 358-MT
Formulation Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein.
Reconstitution Reconstitute at 100 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.
Carrier Free: 358-MT/CF
Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Reconstitution Reconstitute at 100 μg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: HGFR/c-MET

HGF R, also known as Met (from N-methyl-N’-nitro-N-nitrosoguanidine induced), is a glycosylated receptor tyrosine kinase that plays a central role in epithelial morphogenesis and cancer development. HGF R is synthesized as a single chain precursor which undergoes cotranslational proteolytic cleavage. This generates a mature HGF R that is a disulfide-linked dimer composed of a 50 kDa extracellular alpha chain and a 145 kDa transmembrane beta chain (1, 2). The extracellular domain (ECD) contains a seven bladed beta-propeller sema domain, a cysteine-rich PSI/MRS, and four Ig-like E-set domains, while the cytoplasmic region includes the tyrosine kinase domain (3, 4). Proteolysis and alternate splicing generate additional forms of human HGF R which either lack of the kinase domain, consist of secreted extracellular domains, or are deficient in proteolytic separation of the alpha and beta chains (5-7). The sema domain, which is formed by both the alpha and beta chains of HGF R, mediates both ligand binding and receptor dimerization (3, 8). Ligand-induced tyrosine phosphorylation in the cytoplasmic region activates the kinase domain and provides docking sites for multiple SH2-containing molecules (9, 10). HGF stimulation induces HGF R down-regulation via internalization and proteasome-dependent degradation (11). In the absence of ligand, HGF R forms noncovalent complexes with a variety of membrane proteins including CD44v6, CD151, EGF R, Fas, Integrin alpha6/ beta4, Plexins B1, 2, 3, and MSP R/Ron (12-19). Ligation of one complex component triggers activation of the other, followed by cooperative signaling effects (12-19). Formation of some of these heteromeric complexes is a requirement for epithelial cell morphogenesis and tumor cell invasion (12, 16, 17). Paracrine induction of epithelial cell scattering and branching tubulogenesis results from the stimulation of HGF R on undifferentiated epithelium by HGF released from neighboring mesenchymal cells (20). Genetic polymorphisms, chromosomal translocation, over-expression, and additional splicing and proteolytic cleavage of HGF R have been described in a wide range of cancers (1). Within the ECD, human HGF R shares 86%-88% aa sequence identity with canine, mouse, and rat HGF R.

References

  1. Birchmeier, C. et al. (2003) Nat. Rev. Mol. Cell Biol. 4:915.
  2. Corso, S. et al. (2005) Trends Mol. Med. 11:284.
  3. Gherardi, E. et al. (2003) Proc. Natl. Acad. Sci. 100:12039.
  4. Park, M. et al. (1987) Proc. Natl. Acad. Sci. 84:6379.
  5. Crepaldi, T. et al. (1994) J. Biol. Chem. 269:1750.
  6. Prat, M. et al. (1991) Mol. Cell. Biol. 12:5954.
  7. Rodrigues, G.A. et al. (1991) Mol. Cell. Biol. 11:2962.
  8. Kong-Beltran, M. et al. (2004) Cancer Cell 6:75.
  9. Naldini, L. et al. (1991) Mol. Cell. Biol. 11:1793.
  10. Ponzetto, C. et al. (1994) Cell 77:261.
  11. Jeffers, M. et al. (1997) Mol. Cell. Biol. 17:799.
  12. Orian-Rousseau, V. et al. (2002) Genes Dev. 16:3074.
  13. Klosek, S.K. et al. (2005) Biochem. Biophys. Res. Commun. 336:408.
  14. Jo, M. et al. (2000) J. Biol. Chem. 275:8806.
  15. Wang, X. et al. (2002) Mol. Cell 9:411.
  16. Trusolino, L. et al. (2001) Cell 107:643.
  17. Giordano, S. et al. (2002) Nat. Cell Biol. 4:720.
  18. Conrotto, P. et al. (2004) Oncogene 23:5131.
  19. Follenzi, A. et al. (2000) Oncogene 19:3041.
  20. Sonnenberg, E. et al. (1993) J. Cell Biol. 123:223.

Long Name

Hepatocyte Growth Factor Receptor

Alternate Names

c-MET, cMET, HGF R, MET

Entrez Gene IDs

4233 (Human); 17295 (Mouse); 102123512 (Cynomolgus Monkey)

Gene Symbol

MET

UniProt

Additional HGFR/c-MET Products

Product Documents for Recombinant Human HGFR/c-MET Fc Chimera His-tag Protein

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Recombinant Human HGFR/c-MET Fc Chimera His-tag Protein

For research use only

Loading...
Loading...
Loading...
Loading...