Recombinant Human Ubiquitin Rhodamine 110 Protein, CF Best Seller
R&D Systems, part of Bio-Techne | Catalog # U-555
Key Product Details
Product Specifications
Source
Contains a C-terminal Rhodamine 110 (R110)
Predicted Molecular Mass
Activity
Reviewed Applications
Read 2 reviews rated 4.5 using U-555 in the following applications:
Formulation, Preparation and Storage
U-555
Formulation | Supplied as a solution in DMSO. |
Shipping | The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage | Protect from light. Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Background: Ubiquitin
Ubiquitin is a 76 amino acid (aa) protein that is ubiquitously expressed in all eukaryotic organisms. Ubiquitin is highly conserved with 96% aa sequence identity shared between human and yeast Ubiquitin, and 100% aa sequence identity shared between human and mouse Ubiquitin (1). In mammals, four Ubiquitin genes encode for two Ubiquitin-ribosomal fusion proteins and two poly-Ubiquitin proteins. Cleavage of the Ubiquitin precursors by deubiquitinating enzymes gives rise to identical Ubiquitin monomers each with a predicted molecular weight of 8.6 kDa. Conjugation of Ubiquitin to target proteins involves the formation of an isopeptide bond between the C-terminal glycine residue of Ubiquitin and a lysine residue in the target protein. This process of conjugation, referred to as ubiquitination or ubiquitylation, is a multi-step process that requires three enzymes: a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Ubiquitination is classically recognized as a mechanism to target proteins for degradation and as a result, Ubiquitin was originally named ATP-dependent Proteolysis Factor 1 (APF-1) (2,3). In addition to protein degradation, ubiquitination has been shown to mediate a variety of biological processes such as signal transduction, endocytosis, and post-endocytic sorting (4-7).
This fluorogenic substrate is based on the C-terminus derivatization of Ubiquitin with Rhodamine 110 (R110) (8). Similar to Ubiquitin-AMC, this is an exquisitely sensitive deubiquitinating enzyme substrate and is useful for studying Ubiquitin C-terminal hydrolytic activity when detection sensitivity or continuous monitoring is essential.
References
- Sharp, P.M. & W.-H. Li. (1987) Trends Ecol. Evol. 2:328.
- Ciechanover, A. et al. (1980 ) Proc. Natl. Acad. Sci. USA 77:1365.
- Hershko, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1783.
- Greene, W. et al. (2012) PLoS Pathog. 8:e1002703.
- Tong, X. et al. (2012) J. Biol. Chem. 287:25280.
- Wei, W. et al. (2004) Nature 428:194.
- Wertz, I.E. et al. (2004) Nature 430:694.
- Hassiepen, U. et al. (2007) Anal. Biochem. 371: 201.
Alternate Names
Gene Symbol
UniProt
Additional Ubiquitin Products
Product Documents for Recombinant Human Ubiquitin Rhodamine 110 Protein, CF
Product Specific Notices for Recombinant Human Ubiquitin Rhodamine 110 Protein, CF
For research use only