Skip to main content

Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein

Novus Biologicals, part of Bio-Techne | Catalog # H00000860-Q01

Novus Biologicals, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
H00000860-Q01-10ug
Arrives in 6 - 8 Business Days
10 ug / $589.00
H00000860-Q01-25ug
Arrives in 6 - 8 Business Days
25 ug / $769.00

Key Product Details

Source

Wheat germ

Tag

GST (N-Term)

Conjugate

Unconjugated

Applications

ELISA, Affinity Purification, Microarray, Western Blot

Product Specifications

Description

A recombinant protein with a N-terminal GST tag corresponding to the amino acid sequence 251-350 of Human RUNX2/CBFA1

Source: Wheat Germ (in vitro)

Amino Acid Sequence: NPRPSLNSAPSPFNPQGQSQITDPRQAQSSPPWSYDQSYPSYLSQMTSPSIHSTTPLSSTRGTGLPAITDVPRRISDDDTATSDFCLWPSTLSKKSQAGA

Purity

>80% by SDS-PAGE and Coomassie blue staining

Predicted Molecular Mass

36.74 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.

Activity

This protein was produced in an in vitro wheat germ expression system that should preserve correct conformational folding that is necessary for biological function. While it is possible that this protein could display some level of activity, the functionality of this protein has not been explicitly measured or validated.

Protein / Peptide Type

Recombinant Protein

Scientific Data Images for Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein

SDS-PAGE: Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein [H00000860-Q01]

SDS-PAGE: Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein [H00000860-Q01]

SDS-Page: Recombinant Human RUNX2/CBFA1 Protein [H00000860-Q01] - 12.5% SDS-PAGE Stained with Coomassie Blue.

Formulation, Preparation and Storage

H00000860-Q01
Preparation Method in vitro wheat germ expression system
Formulation 50 mM Tris-HCI, 10 mM reduced Glutathione, pH 8.0 in the elution buffer.
Preservative No Preservative
Concentration Please see the vial label for concentration. If unlisted please contact technical services.
Shipping The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Store at -80C. Avoid freeze-thaw cycles.

Background: RUNX2/CBFA1

Runt-related transcription factor 2 (RUNX2), also known as CBFA1, AML-3, PEBP-2alphaA, and OSF-2, is a transcription factor that places a critical role in osteoblast differentiation and bone development (1-3). RUNX2 is a DNA-binding protein that belongs to the RUNX family which share a common runt domain (3). RUNX2 has two main isoforms which vary based on the two promoter regions (3). The main canonical isoform (P1) has MASN/DS at its N-terminus while the other (P2) isoform includes a MRIPV pentapeptide at its N-terminus (3). The RUNX2 P1 isoform has a theoretical molecular weight of 56 kDa and is synthesized as a 521 amino acid (aa) protein containing multiple domains. Specifically, RUNX2 contains transactivation domains (AD1, 2 and 3), a glutamine/alanine (Q/A)-rich domain, a runt homology domain (RHD), a nuclear localization signal (NLS), a proline/serine/threonine (PST)-rich domain, a nuclear matrix targeting signal (NMTS), a repression domain (RD), and a VWRPY region (3). RUNX2 is a heterodimer of an alpha and beta subunit where the alpha subunit binds DNA through the runt domain and the binding affinity is increased through heterodimerization (4).

Functionally, RUNX2 promotes the expression of osteoblast-specific genes vital for the osteoblast differentiation and proliferation process including type I collagen, osteocalcin (OCN), and alkaline phosphatase (APC) (1, 3). Further evidence for the role of RUNX2 is highlighted by a study of Runx2-/-mice which completely lack osteoblasts (4). Additionally, RUNX2 is also required for chondrocyte maturation, which are the cells responsible for cartilage formation (1, 3, 5). Given the role of RUNX2 in bone and cartilage maturation and formation, it is clear that defects or mutations in RUNX2 cause various bone and bone-related diseases (3, 6, 7). For instance, cleidocranial dysplasia (CCD), which presents with delayed cranial suture closure phenotypes, hypoplastic clavicles, extra teeth, and short stature, is caused by haploinsufficiency in RUNX2 (2, 3, 6). Furthermore, metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is a bone dysplasia disorder with a phenotype of abnormalities in the long bones, an underdeveloped jawbone, and short fingers that is caused by a duplication in RUNX2 (6). Finally, RUNX2 has been shown to be upregulated in mouse models of the joint disorder osteoarthritis (OA) and may be a potential molecular target for disease treatment (7).

Alternative names for RUNX2 include Acute myeloid leukemia 3 protein CBFA1, CBF-alpha-1, CCD1, CCDAML3, CLCD, Core-binding factor subunit alpha-1, MGC120023, ML3, oncogene AML-3, OSF2, osteoblast-specific transcription factor 2, PEA2aA, PEA2-alpha A, PEBP2A, polyomavirus enhancer-binding protein 2 alpha A subunit, runt related transcription factor 2, SL3/AKV core-binding factor alpha A subunit, and SL3-3 enhancer factor 1 alpha A subunit.

References

1. Ferreira, L. B., Gimba, E., Vinagre, J., Sobrinho-Simoes, M., & Soares, P. (2020). Molecular Aspects of Thyroid Calcification. International journal of molecular sciences. https://doi.org/10.3390/ijms21207718

2. Kim, W. J., Shin, H. L., Kim, B. S., Kim, H. J., & Ryoo, H. M. (2020). RUNX2-modifying enzymes: therapeutic targets for bone diseases. Experimental & molecular medicine. https://doi.org/10.1038/s12276-020-0471-4

3. Vimalraj, S., Arumugam, B., Miranda, P. J., & Selvamurugan, N. (2015). Runx2: Structure, function, and phosphorylation in osteoblast differentiation. International journal of biological macromolecules. https://doi.org/10.1016/j.ijbiomac.2015.04.008

4. Uniprot (Q13950)

5. Komori T. (2017). Roles of Runx2 in Skeletal Development. Advances in experimental medicine and biology. https://doi.org/10.1007/978-981-10-3233-2_6

6. Moffatt, P., Ben Amor, M., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., & Rauch, F. (2013). Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2. American journal of human genetics. https://doi.org/10.1016/j.ajhg.2012.12.001

7. Chen, D., Kim, D. J., Shen, J., Zou, Z., & O'Keefe, R. J. (2019). Runx2 plays a central role in Osteoarthritis development. Journal of orthopaedic translation. https://doi.org/10.1016/j.jot.2019.11.008

Long Name

Runt-related Transcription Factor 2

Alternate Names

CBFA1

Gene Symbol

RUNX2

Additional RUNX2/CBFA1 Products

Product Documents for Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for Recombinant Human RUNX2/CBFA1 GST (N-Term) Protein

This product is produced by and distributed for Abnova, a company based in Taiwan.

This product is for research use only and is not approved for use in humans or in clinical diagnosis. This product is guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...
×