TLR8 Antibody Blocking Peptide
Novus Biologicals, part of Bio-Techne | Catalog # NBP1-77203PEP
Key Product Details
Source
Synthetic
Conjugate
Unconjugated
Applications
Antibody Competition
Product Specifications
Description
A blocking peptide containing 16 amino acids from the middle of human TLR8.
Source: Synthetic
(Accession #: NP_619542)
Purity
N/A
Application Notes
This peptide is useful as a blocking peptide for NBP1-77203. For further blocking peptide related protocol, click here.
Protein / Peptide Type
Antibody Blocking Peptide
Formulation, Preparation and Storage
NBP1-77203PEP
Formulation | PBS pH 7.2 (10 mM NaH2PO4, 10 mM Na2HPO4, 130 mM NaCl) containing 0.1% bovine serum albumin. |
Preservative | 0.02% Sodium Azide |
Concentration | 0.2 mg/ml |
Shipping | The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage | Store at -20C. Avoid freeze-thaw cycles. |
Background: TLR8
TLR8 is highly similar to TLR7 and both pathways are mediated by the adapter protein MyD88 to signal through IFN regulatory factor 7 (IRF7) and nuclear factor (NF)-kappaB (1-3,5). However, TLR7 recognizes guanosine and GU-rich ssRNA, while TLR8 recognizes uridine and AU-rich sequences (2,5). TLR7/TLR8 agonists, including derivatives of the immunostimulatory imiquimod, have been shown to be a promising cancer therapy capable of providing anticancer signals to antigen presenting cells (APCs), with many agonists being tested in both pre-clinical and clinical trials (6). Similarly, studies suggest that agonists for TLR8, in combination with other individual TLR agonists and antagonists, may also be useful for treating inflammatory allergic diseases, such as allergic rhinitis (7).
References
1. Sakaniwa, K., & Shimizu, T. (2020). Targeting the innate immune receptor TLR8 using small-molecule agents. Acta crystallographica. Section D, Structural biology, 76(Pt 7). https://doi.org/10.1107/S2059798320006518
2. Cervantes, J. L., Weinerman, B., Basole, C., & Salazar, J. C. (2012). TLR8: the forgotten relative revindicated. Cellular & molecular immunology. https://doi.org/10.1038/cmi.2012.38
3. Ohto, U., Tanji, H., & Shimizu, T. (2014). Structure and function of toll-like receptor 8. Microbes and infection. https://doi.org/10.1016/j.micinf.2014.01.007
4. Uniprot (Q9NR97)
5. Jannuzzi, G. P., de Almeida, J., Paulo, L., de Almeida, S. R., & Ferreira, K. S. (2020). Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Frontiers in cellular and infection microbiology. https://doi.org/10.3389/fcimb.2020.591970
6. Frega, G., Wu, Q., Le Naour, J., Vacchelli, E., Galluzzi, L., Kroemer, G., & Kepp, O. (2020). Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology. https://doi.org/10.1080/2162402X.2020.1796002
7. Golshiri-Isfahani, A., Amizadeh, M., & Arababadi, M. K. (2018). The roles of toll like receptor 3, 7 and 8 in allergic rhinitis pathogenesis. Allergologia et immunopathologia. https://doi.org/10.1016/j.aller.2017.09.026
Long Name
Toll-like Receptor 8
Alternate Names
CD288
Gene Symbol
TLR8
Additional TLR8 Products
Product Documents for TLR8 Antibody Blocking Peptide
Product Specific Notices for TLR8 Antibody Blocking Peptide
This product is for research use only and is not approved for use in humans or in clinical diagnosis. This product is guaranteed for 1 year from date of receipt.
Loading...
Loading...
Loading...