Recombinant Human IL-2 Protein
R&D Systems, part of Bio-Techne | Catalog # 202-IL
NEW Next Generation Products! Please try our NEW version of Human Recombinant IL-2 (BT-002). Combining R&D Systems quality with scalability that allows for lower price points and a solid supply chain.
Also, now available is our New AI Modified Recombinant Human IL-2 Heat Stable Agonist Protein (BT-002HS), which can withstand high temperatures and extended culture durations for your T cells and tumor-infiltrating lymphocytes. Learn more in this Application Note.
Key Product Details
Product Specifications
Source
Ala21-Thr153, with an N-terminal Met
Purity
Endotoxin Level
N-terminal Sequence Analysis
Predicted Molecular Mass
SDS-PAGE
Activity
The ED50 for this effect is 0.0500-0.250 ng/mL.
Reviewed Applications
Read 1 review rated 5 using 202-IL in the following applications:
Scientific Data Images for Recombinant Human IL-2 Protein
Recombinant Human IL-2 Protein Bioactivity Comparison
As an alternative, please consider our next generation Recombinant Human IL-2 (BT-002). It has equivalent bioactivity to Recombinant Human IL-2 (Catalog # 202-IL). It combines R&D Systems quality with scalability that allows for a solid supply chain. Both Recombinant Human IL-2 proteins are measured in a cell proliferation assay using CTLL 2 mouse cytotoxic T cells.Formulation, Preparation and Storage
Carrier Free
What does CF mean?CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.
What formulation is right for me?In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.
Carrier: 202-IL
Formulation | Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA with BSA as a carrier protein. |
Reconstitution | Reconstitute at 100 μg/mL in sterile 100 mM Acetic Acid containing at least 0.1% human or bovine serum albumin. Alternatively, reconstitute at 100 μg/mL in sterile deionized water and use within 24 hours, store at 2 to 8 °C. |
Shipping | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Carrier Free: 202-IL/CF
Formulation | Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA. |
Reconstitution | Reconstitute at 100 μg/mL in sterile 100 mM Acetic Acid. Alternatively, reconstitute at 100 μg/mL in sterile deionized water and use within 24 hours, store at 2 to 8 °C. |
Shipping | The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Background: IL-2
Recombinant IL-2 is widely used in cell culture for the expansion of T cells. IL-2 is expressed by CD4+ and CD8+ T cells, gamma delta T cells, B cells, dendritic cells, and eosinophils (1-3). Mature human IL-2 shares 56% and 66% amino acid (aa) sequence identity with mouse and rat IL-2, respectively. Human and mouse IL-2 exhibit cross-species activity (4). The receptor for IL-2 consists of three subunits that are present on the cell surface in varying preformed complexes (5-7). The 55 kDa IL-2 R alpha is specific for IL-2 and binds with low affinity. The 75 kDa IL-2 R beta, which is also a component of the IL-15 receptor, binds IL-2 with intermediate affinity. The 64 kDa common gamma chain gammac/IL-2 R gamma, which is shared with the receptors for IL-4, -7, -9, -15, and -21, does not independently interact with IL-2. Upon ligand binding, signal transduction is performed by both IL-2 R beta and gammac.
IL-2 is best known for its autocrine and paracrine activity on T cells. It drives resting T cells to proliferate and induces IL-2 and IL-2 R alpha synthesis (1, 2). It contributes to T cell homeostasis by promoting the Fas-induced death of naïve CD4+ T cells but not activated CD4+ memory lymphocytes (8). IL-2 plays a central role in the expansion and maintenance of regulatory T cells, although it inhibits the development of Th17 polarized cells (9-11). Thus, IL-2 may be a key cytokine in the natural suppression of autoimmunity (12, 13).
IL-2 expression and concentration can have either immunostimulatory effects at high doses or immunosuppressive effects at low doses due to its preferential binding to different receptor subunits expressed by various immune cell types. This has led to the generation of recombinant IL-2 variants aimed at modifying IL-2 receptor binding for increased antitumor efficacy (14, 15). These variants are typically used in combination with immune checkpoint inhibitors instead of as a monotherapy (14). IL-2 can be genetically engineered to express in NK cells for CAR T cell therapies, and in combination with other cytokines like IL-15, can increase cell viability and proliferation (16). In addition to adoptive cell transfer and checkpoint blockade inhibitors, cancer vaccines that boost immune responses have been combined with IL-2 treatment with promising results in recent studies (15).
In cell culture, IL-2 is a frequently used cytokine for the proliferation, differentiation, and increased antibody secretion of B cells as they transform into plasma cells in vitro (17). IL-2 is also a classically used cytokine for the expansion of NK cells, early differentiated T cells and effector memory Treg cells for adoptive cell transfer cancer immunotherapy (16, 18). GMP IL-2 is a commonly used supplement for the expansion of these cell types for cellular therapies.
References
- Ma, A. et al. (2006) Annu. Rev. Immunol. 24:657.
- Gaffen, S.L. and K.D. Liu (2004) Cytokine 28:109.
- Taniguchi, T. et al. (1983) Nature 302:305.
- Mosmann, T.R. et al. (1987) J. Immunol. 138:1813.
- Liparoto, S.F. et al. (2002) Biochemistry 41:2543.
- Wang, X. et al. (2005) Science 310:1159.
- Bodnar, A. et al. (2008) Immunol. Lett. 116:117.
- Jaleco, S. et al. (2003) J. Immunol. 171:61.
- Malek, T.R. (2003) J. Leukoc. Biol. 74:961.
- Laurence, A. et al. (2007) Immunity 26:371.
- Kryczek, I. et al. (2007) J. Immunol. 178:6730.
- Afzali, B. et al. (2007) Clin. Exp. Immunol. 148:32.
- Fehervari, Z.et al. (2006) Trends Immunol. 27:109.
- Xue, D. et al. (2021) Antibody Therapeutics. 4(2): 123-133.
- Wolfarth, A.A. et al. (2022) Immune Netw. 22(1): e5.
- Koehl, U. et al. (2015) Oncoimmunology. 5(4).
- Marsman, C. et al. (2022) Front. In Immunol. 13(815449).
- Chamucero-Millares, J.A. et al. (2021) Cellular Immunology. 360(104257).
Long Name
Alternate Names
Entrez Gene IDs
Gene Symbol
UniProt
Additional IL-2 Products
Product Documents for Recombinant Human IL-2 Protein
Product Specific Notices for Recombinant Human IL-2 Protein
For research use only