Skip to main content

Key Product Details

Species Reactivity

Validated:

Human, Mouse, Rat

Applications

Dot Blot, ELISA, Immunohistochemistry, Western Blot

Label

Alexa Fluor 405 (Excitation = 405 nm, Emission = 421 nm)

Antibody Source

Monoclonal Mouse IgG1 Clone # 3C11

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Product Summary for alpha-Synuclein Antibody (3C11) [Alexa Fluor® 405]

Immunogen

Human alpha-Synuclein monomer

Localization

Cytoplasm|Cytosol|Membrane|Nucleus|Cell Junction|Synapse

Specificity

Binds within the 81-130 aa region of human ASYN, determined using WB and ELISA with corresponding peptides. Detects ~14 kDa band corresponding to ASYN. Band at ~30 kDa is a dimer.

Clonality

Monoclonal

Host

Mouse

Isotype

IgG1

Applications for alpha-Synuclein Antibody (3C11) [Alexa Fluor® 405]

Application
Recommended Usage

Dot Blot

Optimal dilutions of this antibody should be experimentally determined.

ELISA

Optimal dilutions of this antibody should be experimentally determined.

Immunohistochemistry

Optimal dilutions of this antibody should be experimentally determined.

Western Blot

Optimal dilutions of this antibody should be experimentally determined.
Application Notes
Optimal dilution of this antibody should be experimentally determined.
Please Note: Optimal dilutions of this antibody should be experimentally determined.

Formulation, Preparation, and Storage

Purification

Protein G purified

Formulation

50mM Sodium Borate

Preservative

0.05% Sodium Azide

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at 4C in the dark.

Background: alpha-Synuclein

Alpha-synuclein, a member of the synuclein family, is a protein that was first identified in 1988 whose name is derived from its localization to both the synapse and nucleus (1-3). Specifically, it is expressed primarily in the brain, including Lewy Bodies (1-6). Alpha-synuclein is encoded by the SNCA gene, located on chromosome 4p21, and is processed as a 140 amino acid (aa) protein with a theoretical molecular weight of 14 kDa (1,2,4). Structurally alpha-synuclein consists of a N-terminal binding domain (1-60 aa), a central domain core region called the non-amyloid-beta component (NAC) (61-95 aa), and a C-terminal domain (96-140 aa) (1-3). The N-terminal region contains aa repeats with a KTKEGV consensus sequence that gives the protein its alpha-helical structure that associates with lipid membranes (1-4). The hydrophobic NAC region is responsible for alpha-synuclein aggregation and fibril formation (1-4). The acidic C-terminal tail is largely unstructured but can be targeted for post-translational modifications (1-4). The function of alpha-synuclein is not entirely understood, but it is shown to have a role in suppression of apoptosis, acting as a molecular chaperone, regulating glucose, and modulating calmodulin activity (1,3).

A number of studies have revealed that alpha-synuclein aggregation is a hallmark feature in a number of neurodegenerative diseases, referred to as synucleinopathies (2-4). Alpha-synuclein protein aggregates are a large component of Lewy bodies that are present in Parkinson's disease (PD), Lewy body dementia (LBD), and multiple system atrophy (1-6). Research has shown phosphorylation of alpha-synuclein at Ser129 moves the protein from the nucleus to the cytoplasm and promotes fibril formation associated with synucleinopathies (1,2,5). Recent studies also suggest that alpha-synuclein accumulation can prevent mitochondrial import machinery causing mitochondrial dysfunction that is often observed in neurodegeneration (5). It is thought that preventing alpha-synuclein aggregation may prevent PD, thus alpha-synuclein is a target for many potential therapeutic interventions aimed at decreasing aggregate formation or increasing clearance (1,2,4-6).

References

1. Villar-Pique, A., Lopes da Fonseca, T., & Outeiro, T. F. (2016). Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. Journal of neurochemistry. https://doi.org/10.1111/jnc.13249

2. Emamzadeh F. N. (2016). Alpha-synuclein structure, functions, and interactions. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences. https://doi.org/10.4103/1735-1995.181989

3. Burre J. (2015). The Synaptic Function of alpha-Synuclein. Journal of Parkinson's disease. https://doi.org/10.3233/JPD-150642

4. Lashuel, H. A., Overk, C. R., Oueslati, A., & Masliah, E. (2013). The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nature reviews. Neuroscience. https://doi.org/10.1038/nrn3406

5. Rocha, E. M., De Miranda, B., & Sanders, L. H. (2018). Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiology of disease. https://doi.org/10.1016/j.nbd.2017.04.004

6. O'Leary, E. I., & Lee, J. C. (2019). Interplay between alpha-synuclein amyloid formation and membrane structure. Biochimica et biophysica acta. Proteins and proteomics. https://doi.org/10.1016/j.bbapap.2018.09.012

Alternate Names

NACP, PARK1, PARK4, SNCA, Synuclein-alpha

Gene Symbol

SNCA

Additional alpha-Synuclein Products

Product Documents for alpha-Synuclein Antibody (3C11) [Alexa Fluor® 405]

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for alpha-Synuclein Antibody (3C11) [Alexa Fluor® 405]

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...