RAB3GAP1 Products
Members of the RAB3 protein family (see RAB3A; MIM 179490) are implicated in regulated exocytosis of neurotransmitters and hormones. RAB3GAP, which is involved in regulation of RAB3 activity, is a heterodimeric complex consisting a 130-kD catalytic subunit and a 150-kD noncatalytic subunit (MIM 609275). RAB3GAP specifically converts active RAB3-GTP to the inactive form RAB3-GDP (Aligianis et al., 2005 [PubMed 15696165]).[supplied by OMIM]
Show More
28 results for "RAB3GAP1" in Products
28 results for "RAB3GAP1" in Products
RAB3GAP1 Products
Members of the RAB3 protein family (see RAB3A; MIM 179490) are implicated in regulated exocytosis of neurotransmitters and hormones. RAB3GAP, which is involved in regulation of RAB3 activity, is a heterodimeric complex consisting a 130-kD catalytic subunit and a 150-kD noncatalytic subunit (MIM 609275). RAB3GAP specifically converts active RAB3-GTP to the inactive form RAB3-GDP (Aligianis et al., 2005 [PubMed 15696165]).[supplied by OMIM]
Show More
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | IHC, WB, KD |
Reactivity: | Human, Mouse, Rat |
Details: | Rabbit IgG Polyclonal |
Applications: | WB |
Applications: WB, IP
Reactivity:
Human
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |
Reactivity: | Human |
Details: | Rabbit IgG Polyclonal |
Applications: | WB, IP |