Skip to main content

Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein

Novus Biologicals, part of Bio-Techne | Catalog # H00002034-P03

Novus Biologicals, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
H00002034-P03-2ug

Key Product Details

Source

Wheat germ

Tag

GST (N-Term)

Conjugate

Unconjugated

Applications

ELISA, Affinity Purification, Microarray, Western Blot

Product Specifications

Description

A recombinant protein with GST tag at N-terminal corresponding to the amino acids 1-870 of Human EPAS1

Source: Wheat Germ (in vitro)

Amino Acid Sequence: MTADKEKKRSSSERRKEKSRDAARCRRSKETEVFYELAHELPLPHSVSSHLDKASIMRLAISFLRTHKLLSSVCSENESEAEADQQMDNLYLKALEGFIAVVTQDGDMIFLSENISKFMGLTQVELTGHSIFDFTHPCDHEEIRENLSLKNGSGFGKKSKDMSTERDFFMRMKCTVTNRGRTVNLKSATWKVLHCTGQVKVYNNCPPHNSLCGYKEPLLSCLIIMCEPIQHPSHMDIPLDSKTFLSRHSMDMKFTYCDDRITELIGYHPEELLGRSAYEFYHALDSENMTKSHQNLCTKGQVVSGQYRMLAKHGGYVWLETQGTVIYNPRNLQPQCIMCVNYVLSEIEKNDVVFSMDQTESLFKPHLMAMNSIFDSSGKGAVSEKSNFLFTKLKEEPEELAQLAPTPGDAIISLDFGNQNFEESSAYGKAILPPSQPWATELRSHSTQSEAGSLPAFTVPQAAAPGSTTPSATSSSSSCSTPNSPEDYYTSLDNDLKIEVIEKLFAMDTEAKDQCSTQTDFNELDLETLAPYIPMDGEDFQLSPICPEERLLAENPQSTPQHCFSAMTNIFQPLAPVAPHSPFLLDKFQQQLESKKTEPEHRPMSSIFFDAGSKASLPPCCGQASTPLSSMGGRSNTQWPPDPPLHFGPTKWAVGDQRTEFLGAAPLGPPVSPPHVSTFKTRSAKGFGARGPDVLSPAMVALSNKLKLKRQLEYEEQAFQDLSGGDPPGGSTSHLMWKRMKNLRGGSCPLMPDKPLSANVPNDKFTQNPMRGLGHPLRHLPLPQPPSAISPGENSKSRFPPQCYATQYQDYSLSSAHKVSGMASRLLGPSFESYLLPELTRYDCEVNVPVLGSSTLLQGGDLLRALDQAT

Purity

>80% by SDS-PAGE and Coomassie blue staining

Predicted Molecular Mass

122.1 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.

Activity

This protein was produced in an in vitro wheat germ expression system that should preserve correct conformational folding that is necessary for biological function. While it is possible that this protein could display some level of activity, the functionality of this protein has not been explicitly measured or validated.

Protein / Peptide Type

Recombinant Protein

Scientific Data Images for Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein

SDS-PAGE: Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein [H00002034-P03]

SDS-PAGE: Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein [H00002034-P03]

SDS-Page: Recombinant Human HIF-2 alpha/EPAS1 Protein [H00002034-P03] - 12.5% SDS-PAGE Stained with Coomassie Blue

Formulation, Preparation and Storage

H00002034-P03
Preparation Method in vitro wheat germ expression system
Formulation 50 mM Tris-HCl, 10 mM reduced Glutathione, pH 8.0 in the elution buffer.
Preservative No Preservative
Concentration Please see the vial label for concentration. If unlisted please contact technical services.
Shipping The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Store at -80C. Avoid freeze-thaw cycles.

Background: HIF-2 alpha/EPAS1

Hypoxia contributes to the pathophysiology of human disease, including myocardial and cerebral ischemia, cancer, pulmonary hypertension, congenital heart disease and chronic obstructive pulmonary disease (1). In cancer, and particularly solid tumors, hypoxia plays a critical role in the regulation of genes involved in stem cell renewal, epithelial to mesenchymal transition (EMT), metastasis and angiogenesis. In the tumor microenvironment (TME), hypoxia influences the properties and function of stromal cells (e.g., fibroblasts, endothelial and immune cells) and is a strong determinant of tumor progression (2,3).

HIF-1 or hypoxia inducible factor 1, is a transcription factor commonly referred to as a "master regulator of the hypoxic response" for its central role in the regulation of cellular adaptations to hypoxia. Similarly, HIF-2 alpha plays a role in cellular responses to hypoxia, but whereas HIF-1 alpha is ubiquitously expressed, HIF-2 alpha is predominantly expressed in the vascular endothelium at embryonic stages and after birth in select cells and tissue types (e.g., fibroblasts, hepatocytes and myocytes at 96kDa) (4). Following a similar mechanism to HIF-1 alpha, HIF-2 alpha is stabilized under hypoxic conditions by the formation of a heterodimer with an ARNT/HIF-1 beta subunit. Stable HIF-2 alpha-ARNT/HIF-1 beta heterodimers engage p300/CBP in the nucleus for binding to hypoxic response elements (HREs), inducing transcription, and thus regulation of genes (e.g., EPO, VEGFA). HIF-1 predominantly transactivates genes involved in glycolytic control and pro- apoptotic genes (e.g., LDHA and BNIP3), and HIF-2 regulates the expression of genes involved in invasion and stemness (e.g., MMP2, and OCT4). Common gene targets for HIF-1 and HIF-2 include VEGFA and GLUT1 (5).

The HIF-2 alpha subunit is rapidly targeted and degraded by the ubiquitin proteasome system under normoxic conditions. This process is mediated by oxygen-sensing enzymes, prolyl hydroxylase domain enzymes (PHDs), which catalyze the hydroxylation of key proline residues (Pro-405 and Pro-531) within the oxygen-dependent degradation domain of HIF-2 alpha (5). Once hydroxylated, HIF-2 alpha binds the von Hippel-Lindau tumor suppressor protein (pVHL) for subsequent ubiquitination and proteasomal degradation (5,6).

References

1. Semenza, G. L., Agani, F., Feldser, D., Iyer, N., Kotch, L., Laughner, E., & Yu, A. (2000). Hypoxia, HIF-1, and the pathophysiology of common human diseases. Advances in Experimental Medicine and Biology.

2.Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. https://doi.org/10.2147/hp.s93413

3. Huang, Y., Lin, D., & Taniguchi, C. M. (2017). Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Science China Life Sciences. https://doi.org/10.1007/s11427-017-9178-y

4. Hu, C.-J., Wang, L.-Y., Chodosh, L. A., Keith, B., & Simon, M. C. (2003). Differential Roles of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in Hypoxic Gene Regulation. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.23.24.9361-9374.2003

5. Koh, M. Y., & Powis, G. (2012). Passing the baton: The HIF switch. Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2012.06.004

6. Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M., & Harada, H. (2018). Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Science. https://doi.org/10.1111/cas.13483

Long Name

Hypoxia-inducible Transcription Factor 2 alpha

Alternate Names

EPAS1, HIF 2A, HIF2 alpha, HIF2A, HLF, MOP2

Gene Symbol

EPAS1

Additional HIF-2 alpha/EPAS1 Products

Product Documents for Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for Recombinant Human HIF-2 alpha/EPAS1 GST (N-Term) Protein

This product is produced by and distributed for Abnova, a company based in Taiwan.

This product is for research use only and is not approved for use in humans or in clinical diagnosis. This product is guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...