Skip to main content

Recombinant Human VEGFR1/Flt-1 Fc Chimera Protein

R&D Systems, part of Bio-Techne | Catalog # 321-FL

R&D Systems, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
Carrier Free
321-FL-050/CF

Catalog #
Availability
Size / Price
Qty
With Carrier
321-FL-050

Key Product Details

Source

Sf 21 (baculovirus)

Accession #

Structure / Form

Disulfide-linked homodimer

Conjugate

Unconjugated

Applications

Bioactivity

Product Specifications

Source

Spodoptera frugiperda, Sf 21 (baculovirus)-derived human VEGFR1/Flt-1 protein
Human VEGFR1
(Ser27-His687)
Accession # AAC50060
IEGRMD Human IgG1
(Pro100-Lys330)
6-His tag
N-terminus C-terminus

Purity

>90%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Endotoxin Level

<0.10 EU per 1 μg of the protein by the LAL method.

N-terminal Sequence Analysis

Ser27

Predicted Molecular Mass

100 kDa (monomer)

SDS-PAGE

123 kDa, reducing conditions

Activity

Measured by its ability to inhibit the VEGF-dependent proliferation of HUVEC human umbilical vein endothelial cells. Conn, G. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1323.
The ED50 for this effect is 5-30 ng/mL.

Reviewed Applications

Read 11 reviews rated 4.8 using 321-FL in the following applications:

Formulation, Preparation and Storage

Carrier Free
What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

Carrier: 321-FL
Formulation Lyophilized from a 0.2 μm filtered solution in MOPS, NaCl and CHAPS with BSA as a carrier protein.
Reconstitution Reconstitute at 100 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 3 months, 2 to 8 °C under sterile conditions after reconstitution.
Carrier Free: 321-FL/CF
Formulation Lyophilized from a 0.2 μm filtered solution in MOPS, NaCl and CHAPS.
Reconstitution Reconstitute at 100 μg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 3 months, 2 to 8 °C under sterile conditions after reconstitution.

Background: VEGFR1/Flt-1

VEGFR1 (vascular endothelial growth factor receptor 1), also called Flt-1 (Fms-like tyrosine kinase), is a 180 kDa type I transmembrane glycoprotein in the class III subfamily of receptor tyrosine kinases (RTKs) (1, 2). While family members VEGFR1, VEGFR2/KDR/Flk-1 and VEGFR3/Flt-4 are all mainly expressed on endothelial cells and play central roles in vasculogenesis, angiogenesis, and lymphangiogenesis, only VEGFR1 is expressed on macrophages, and mainly plays inhibitory roles (1-3). VEGFR1 expression is also reported on osteoblasts, placental trophoblasts, renal mesangial cells, and some hematopoietic stem cells (1, 2). Like other class III RTKs, human VEGFR1 contains a signal peptide (aa 1-22), an extracellular domain (ECD aa 27-758) with seven Ig-like repeats, a transmembrane domain (aa 759-780) and a cytoplasmic region (aa 781-1338) with a tyrosine kinase domain and several autocatalytic phosphotyrosine sites. Human VEGFR1 ECD shares 78%, 78%, 84%, 87%, and 90% aa sequence identity with mouse, rat, porcine, canine and equine VEGFR1, respectively. Soluble forms of the VEGFR1 ECD are produced by alternative splicing, and may also be shed during regulated intracellular proteolysis (4-10). Both soluble and transmembrane forms can inhibit angiogenesis by binding and sequestering its ligands, VEGF (VEGF-A), VEGF-B or PlGF (6‑11). VEGFR1 dimerizes upon ligand binding, which can include heterodimerization with VEGFR2 that modifies VEGFR2-mediated endothelial proliferation and vessel branching (8, 11, 12). VEGFR1 binds VEGF with higher affinity than does VEGFR2, but shows weaker kinase activity (9, 13). Both PlGF and VEGF induce autophosphorylation of transmembrane VEGFR1 (5, 9, 13). While deletion of mouse VEGFR1 is lethal due to overgrowth and disorganization of the vasculature, kinase-inactive mutants are viable (13, 14). VEGFR1 is up‑regulated during hypoxia, and participates in neovascularization and wound healing (1, 2, 15). VEGFR1 engagement on monocyte/macrophage lineage cells enhances their migration, and release of growth factors and cytokines (1, 3, 13, 16). Lymphangiogenesis, angiogenesis, and growth-promoting effects of VEGFR1 are thought to result from enhanced migration of macrophages from the bone marrow to tumors and tissues where they recruit endothelial progenitors (3, 16). Circulating levels of VEGFR1 increase during pregnancy and are further elevated in preeclampsia (4, 6, 17).

References

  1. Otrock, Z.K. et al. (2007) Blood Cells Mol. Dis. 38:258.
  2. Peters, K.G. et al. (1993) Proc. Natl. Acad. Sci. USA 90:8915.
  3. Murakami, M. et al. (2008) Arterioscler. Thromb. Vasc. Biol. 28:658.
  4. Al-Ani, B. et al. (2010) Hypertension 55:689.
  5. Rahimi, N. et al. (2009) Cancer Res. 69:2607.
  6. He, Y. et al. (1999) Molecular Endocrinology 13:537.
  7. Cai, J. et al. (2012) EMBO Mol. Med. 4:980.
  8. Kendall, R.L. and K.A. Thomas (1993) Proc. Natl. Acad. Sci. USA 90:10705.
  9. Sawano, A. et al. (1996) Cell Growth Differ. 7:213.
  10. Barleon, B. et al. (1997) J. Biol. Chem. 272:10382.
  11. Kappas, N.C. et al. (2008) J. Cell Biol. 181:847.
  12. Mac Gabhann, F. and A.S. Popel (2007) Biophys. Chem. 128:125.
  13. Hiratsuka, S. et al. (1998) Proc. Natl. Acad. Sci. USA 95:9349.
  14. Fong, G.H. et al. (1995) Nature 376:66.
  15. Nishi, J. et al. (2008) Circ. Res. 103:261.
  16. Muramatsu, M. et al. (2010) Cancer Res. 70:8211.
  17. Levine, R.J. et al. (2004) N. Engl. J. Med. 350:672.

Long Name

Vascular Endothelial Growth Factor Receptor 1

Alternate Names

Flt-1, FLT1, FRT, VEGF R1, VEGFR-1

Entrez Gene IDs

2321 (Human); 14254 (Mouse)

Gene Symbol

FLT1

UniProt

Additional VEGFR1/Flt-1 Products

Product Documents for Recombinant Human VEGFR1/Flt-1 Fc Chimera Protein

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Recombinant Human VEGFR1/Flt-1 Fc Chimera Protein

For research use only

Loading...
Loading...
Loading...
Loading...