Skip to main content

Human Endoglin/CD105 PE-conjugated Antibody

R&D Systems, part of Bio-Techne | Catalog # FAB10971P

R&D Systems, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
FAB10971P-025
FAB10971P-100

Key Product Details

Species Reactivity

Validated:

Human

Cited:

Human, Mouse, Porcine

Applications

Validated:

Flow Cytometry

Cited:

Flow Cytometry, Immunocytochemistry

Label

Phycoerythrin (Excitation = 488 nm, Emission = 565-605 nm)

Antibody Source

Monoclonal Mouse IgG1 Clone # 166707

Product Specifications

Immunogen

Mouse myeloma cell line NS0-derived recombinant human Endoglin/CD105
Glu26-Gly586
Accession # Q5T9B9

Specificity

Detects human Endoglin/CD105.

Clonality

Monoclonal

Host

Mouse

Isotype

IgG1

Scientific Data Images for Human Endoglin/CD105 PE-conjugated Antibody

Detection of Endoglin/CD105 antibody in U937 Human Cell Line antibody by Flow Cytometry.

Detection of Endoglin/CD105 in U937 Human Cell Line by Flow Cytometry.

U937 human histiocytic lymphoma cell line was stained with Mouse Anti-Human Endoglin/CD105 PE-conjugated Mono-clonal Antibody (Catalog # FAB10971P, filled histogram) or isotype control antibody (Catalog # IC002P, open histogram). View our protocol for Staining Membrane-associated Proteins.
Detection of Human Endoglin/CD105 by Flow Cytometry

Detection of Human Endoglin/CD105 by Flow Cytometry

Isolation and characterization of amniotic derived mesenchymal stem cells with renal marker expression(A) Light microscopic image of mesenchymal stem cells isolated from amniotic fluid. A subpopulation of these cells (with renal markers) displays a trumpet shaped phenotype (scale bar = 200 μm). (B) hAFSCs were characterized by flow cytometry (positive for CD24, CD117, CD73, HLA-ABC, CD29, and CD105 but not for CD45, or CD34). (C) Confocal imaging of hAFSCs for renal markers SIX2 and PAX2. (D) Expression of Six2 and Pax2 (left panel) in hAFSCs compared to human embryonic kidney (hEK). Agarose gel analysis of PCR fragments (SIX2: 336 bp; PAX2: 65 bp; KSP: 152bp; GAPDH: 189 bp) (E). hAFSCs were differentiated along adipogenic, osteogenic and chondrogenic lineages (left to right). In the adipogenic differentiation the cells formed lipid vesicles stained with oil red O (left) (magnification 100X). Calcium deposits stained with Alizarin confirmed osteogenesis (center). Micromasses stained with alcian blue confirmed chondrogenesis (right) (scale bar = 200 μm). Quantification of chondrogenic and osteogenic differentiation using dye extraction and quantification with spectrophotometry before and after differentiation (left panel). qPCR analysis of chondrogenic markers (Sox9, Col II) and osteogenic markers (ALP, Runx2 and OST) before and after differentiation (right panel). Image collected and cropped by CiteAb from the following publication (https://dx.plos.org/10.1371/journal.pone.0136145), licensed under a CC-BY license. Not internally tested by R&D Systems.

Applications for Human Endoglin/CD105 PE-conjugated Antibody

Application
Recommended Usage

Flow Cytometry

10 µL/106 cells
Sample: U937 human histiocytic lymphoma cell line
Please Note: Optimal dilutions of this antibody should be experimentally determined.

Formulation, Preparation, and Storage

Purification

Protein A or G purified from hybridoma culture supernatant

Formulation

Supplied in a saline solution containing BSA and Sodium Azide.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Protect from light. Do not freeze.
  • 12 months from date of receipt, 2 to 8 °C as supplied.

Background: Endoglin/CD105

Endoglin (CD105) is a 90 kDa type I transmembrane glycoprotein of the zona pellucida (ZP) family of proteins (1‑3). Endoglin and betaglycan/T betaRIII are type III receptors for TGF beta superfamily ligands, sharing 71% aa identity in the transmembrane (TM) and cytoplasmic domains. Endoglin is highly expressed on proliferating vascular endothelial cells, chondrocytes, and syncytiotrophoblasts of term placenta, with lower amounts on hematopoietic, mesenchymal and neural crest stem cells, activated monocytes, and lymphoid and myeloid leukemic cells (2-5). Human Endoglin cDNA encodes 658 amino acids (aa) including a 25 aa signal sequence, a 561 aa extracellular domain (ECD) with an orphan domain and a two-part ZP domain, a TM domain and a 47 aa cytoplasmic domain (1-3). An isoform with a 14 aa cytoplasmic domain (S-endoglin) can oppose effects of long (L) Endoglin (6, 7). The human Endoglin ECD shares 65-72% aa identity with mouse, rat, bovine, porcine and canine Endoglin. Endoglin homodimers interact with TGF-beta 1 and TGF-beta 3 (but not TGF-beta 2), but only after binding T betaRII (8). Similarly, they interact with activin-A and BMP-7 via activin type IIA or B receptors, and with BMP-2 via BMPR-1A/ALK-3 or BMPR-1B/ALK-6 (9). BMP-9, however, is reported to bind Endoglin directly (10). Endoglin modifies ligand-induced signaling in multiple ways. For example, expression of Endoglin can inhibit TGF-beta 1 signals but enhance BMP7 signals in the same myoblast cell line (11). In endothelial cells, Endoglin inhibits T betaRI/ALK5, but enhances ALK1-mediated activation (12). Deletion of mouse Endoglin causes lethal vascular and cardiovascular defects, and human Endoglin haploinsufficiency can a cause the vascular disorder, hereditary hemorrhagic telangiectasia type I (13, 14). These abnormalities confirm the essential function of Endoglin in differentiation of smooth muscle, angiogenesis, and neovascularization (2‑4, 12‑14). In preeclampsia of pregnancy, high levels of proteolytically generated soluble Endoglin and VEGF R1 (sFLT1), along with low placental growth factor (PlGF), are pathogenic due to antiangiogenic activity (15).

References

  1. Gougos, A. and Letarte, M. (1990) J. Biol. Chem. 265:8361.
  2. ten Dijke, P. et al. (2008) Angiogenesis 11:79.
  3. Bernabeu, C. et al. (2007) J. Cell. Biochem. 102:1375.
  4. Mancini, M.L. et al. (2007) Dev. Biol. 308:520.
  5. Moody, J.L. et al. (2007) Stem Cells 25:2809.
  6. Velasco, S. et al. (2008) J. Cell Sci. 121:913.
  7. Perez-Gomez, E. et al. (2005) Oncogene 24:4450.
  8. Cheifetz, S, et al. (1992) J. Biol. Chem. 267:19027.
  9. Barbara, N.P. et al. (1999) J. Biol. Chem. 274:584.
  10. Scharpfenecker, M. et al. (2007) J. Cell Sci. 120:964.
  11. Scherner, O. et al. (2007) J. Biol. Chem. 282:13934.
  12. Pece-Barbara, N. et al. (2005) J. Biol. Chem. 280:27800.
  13. Arthur, H.M. et al. (2000) Dev. Biol. 217:42.
  14. Lebrin, F. and C.L. Mummery (2008) Trends Cardiovasc. Med. 18:25.    
  15. Venkatesha, S. et al. (2006) Nat. Med. 12:642.

Alternate Names

CD105, ENG

Entrez Gene IDs

2022 (Human); 13805 (Mouse); 497010 (Rat)

Gene Symbol

ENG

UniProt

Additional Endoglin/CD105 Products

Product Documents for Human Endoglin/CD105 PE-conjugated Antibody

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Human Endoglin/CD105 PE-conjugated Antibody

For research use only

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...