Skip to main content

Key Product Details

Species Reactivity

Human

Applications

Flow Cytometry

Label

PE/Atto594 (Excitation = 488 nm, Emission = 627 nm)

Antibody Source

Recombinant Monoclonal Rat IgG2A Clone # 344823R

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Product Specifications

Immunogen

Mouse myeloma cell line NS0-derived recombinant human TIM‑3
Ser22-Arg200
Accession # Q8TDQ0.2

Specificity

Detects human TIM-3 in direct ELISAs.

Clonality

Monoclonal

Host

Rat

Isotype

IgG2A

Applications for TIM-3 Antibody (344823R) [PE/Atto594]

Application
Recommended Usage

Flow Cytometry

Optimal dilutions of this antibody should be experimentally determined.
Application Notes
Optimal dilution of this antibody should be experimentally determined. For optimal results using our Tandem dyes, please avoid prolonged exposure to light or extreme temperature fluctuations. These can lead to irreversible degradation or decoupling. When staining intracellular targets, specific attention to the fixation and permeabilization steps in your flow protocol may be required. Please contact our technical support team at technical@novusbio.com if you have any questions.

Formulation, Preparation, and Storage

Purification

Protein A or G purified from cell culture supernatant

Formulation

PBS

Preservative

0.05% Sodium Azide

Concentration

Please see the vial label for concentration. If unlisted please contact technical services.

Shipping

The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store at 4C in the dark. Do not freeze.

Background: TIM-3

T cell immunoglobulin and mucin-domain containing 3 (TIM-3) is a type I transmembrane protein that functions in suppressing immune cell responses and is considered a checkpoint receptor (1,2). TIM-3 is an inhibitory receptor that was first identified as a cell marker for interferon-gamma (IFN-gamma)-producing CD4+ T helper (Th1) and CD8+ T cytotoxic (Tc1) cells (1,2). TIM-3 is also expressed on other immune cell types: regulatory T cells (Treg), natural killer (NK) cells, macrophages, and dendritic cells (DCs), as well as leukemia stem cells (LSCs) (1-3). Human TIM-3 protein is 301 amino acids (aa) in length with a theoretical molecular weight (MW) of 33.4 kDa and shares ~63% aa sequence identity with mouse TIM-3 (2,4). The TIM-3 protein has an extracellular IgV domain, a mucin and stalk domain with O- and N-glycosylation sites, a transmembrane domain, and an intracellular tail with conserved tyrosine residues (2,3). Ligands for TIM-3 include soluble galectin-9, high-mobility group protein B1 (HMGB1), phosphatidylserine (PtdSer), and carcinoembyronic antigen-related cell adhesion molecule-1 (CEACAM-1) (1-3,5). Each of these ligands interact with different regions of the TIM-3 IgV domain. In the absence of ligand binding, the unphosphorylated intracellular tyrosine residues of TIM-3 are associated with HLA-B associated transcript 3 (Bat3), which recruits Lck and this Bat3-Lck complex preserves T cell signaling (1-3,5). When TIM-3 is engaged, an intracellular signaling cascade is initiated to inhibit immune cell activation. (1-3,5). Specifically, the tyrosine residues of TIM-3 are phosphorylated, Bat3 is released, and this results in suppression of immune responses (1-3, 5). Persistent, sustained TIM-3 signaling eventually results in T cell exhaustion (1-3,5).

Dysregulation of TIM-3 expression is associated with autoimmune diseases as shown by studies where inhibition of TIM-3 using blocking antibodies worsened disease progression in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis (MS) (2,3,5). Conversely, high levels of TIM-3 have been shown during viral infection as well as in many cancer types where its increased expression may be an indicator of poor prognosis (2,3,5). TIM-3 has emerged as a potential cancer immunotherapy target as preclinical studies blocking TIM-3 results in increased anti-tumor immunity and prevents tumor growth (3,5). Studies have suggested combination therapy of TIM-3 blockade with blockade of other checkpoint inhibitors such as programmed death 1 (PD-1) or lymphocyte activation gene 3 (LAG-3) is more effective than TIM-3 blockade alone (3,5).

References

1. Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020; 8(1):e000911. https://doi.org/10.1136/jitc-2020-000911

2. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017; 276(1):97-111. https://doi.org/10.1111/imr.12520

3. Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol. 2017; 410:127-156. https://doi.org/10.1007/82_2017_62

4. Uniprot (Q8TDQ0)

5. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020; 20(3):173-185. https://doi.org/10.1038/s41577-019-0224-6

Long Name

T Cell Immunoglobulin Mucin-3

Alternate Names

CD366, HAVcr-2, HAVCR2, KIM-3, SPTCL, TIM3, TIMD3

Additional TIM-3 Products

Product Documents for TIM-3 Antibody (344823R) [PE/Atto594]

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Product Specific Notices for TIM-3 Antibody (344823R) [PE/Atto594]

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...