Kit Summary
Base media for the differentiation of MSCs into chondrocytes. For use with Human/Mouse and Rat StemXVivo® Chondrogenic Supplements.
Key Benefits
- Defined formulation that reduces experimental variation
- Supports induction of chondrogenesis in MSCs
- Developed and optimized using MSCs
Why Induce Chondrogenesis in MSCs with Defined Media?
Despite the well-characterized factors and protocols used to differentiate mesenchymal stem/stromal cells (MSCs) into chondrocytes, differentiation efficiencies can vary depending on the quality of the MSC starting population and the reagents used to expand and differentiate MSCs.
StemXVivo® Chondrogenic Base Media:
- Is defined to support reproducible MSC chondrogenesis.
- Offers flexibility to evaluate novel cytokine and growth factor combinations to induce chondrogenesis.
- Has been developed and optimized using MSCs.
- Can be used with StemXVivo® Human/Mouse or Rat Chondrogenic Supplements to reduce variation during chondrogenesis.
Mesenchymal Stromal Cells or Mesenchymal Stem Cells?
The term ‘mesenchymal stromal cells’ is commonly used to describe a heterogeneous population of cultured cells that are adherent to plastic, have a distinct morphology, and express a specific set of marker proteins. Within this heterogeneous population are cells referred to as ‘mesenchymal stem cells.’
Mesenchymal stem cells are multipotent, self-renewing cells that have the ability to differentiate into adipocytes, chondrocytes, and osteoblasts when cultured in vitro. Read More about MSC Nomenclature
Human/Mouse/Rat StemXVivo® Chondrogenic Base Media
Supplied in a 50 mL volume, this media contains high quality factors to drive MSC differentiation into chondrocytes when used with additional differentiation factors.
- Supplemented with sodium bicarbonate but does not contain antibiotics.
*This medium requires supplements (not included), such as Human/Mouse StemXVivo® Chondrogenic Supplement (Catalog # CCM006), Rat StemXVivo® Chondrogenic Supplement (Catalog # CCM020), or user-defined cytokines and growth factors to induce chondrogenesis.
Precautions
This product contains human transferrin. The transferrin was purified from donor plasma and tested at the donor level using an FDA licensed method and found to be non-reactive for anti-HIV-1/2 and Hepatitis B surface antigen.
2006 Proposed Change to MSC Nomenclature
Although mesenchymal stromal cells were once referred to as ‘mesenchymal stem cells’, a change to ‘mesenchymal stromal cells’ was proposed by the International Society for Cellular Therapy in 2006.1
The change in nomenclature originates from two important factors:
- Methods used to isolate mesenchymal stem cells yield a heterogeneous population of cells with only a fraction of these cells demonstrating multipotency.
- The absence of direct evidence that mesenchymal stem cells can self-renew and differentiate in vivo.
Use of Mesenchymal Stem and Stromal Cell Terminology
Data supporting MSC self-renewal and multipotency have been obtained using in vitro conditions, which does not adequately reflect the in vivo environment. The lack of in vivo data has led some researchers to question the validity of the term ‘mesenchymal stem cell’ providing further support for the use of ‘mesenchymal stromal cells’ to describe MSCs.2 While ‘mesenchymal stromal cells’ may be the more scientifically accurate term for MSCs, the two terms are often used interchangeably in the literature. R&D Systems recognizes the use of both mesenchymal stem cells and mesenchymal stromal cells and uses ‘MSC’ to indicate mesenchymal stem/stromal cells to account for both designations.
Definitions of Mesenchymal Stromal Cells and Mesenchymal Stem Cells
- Mesenchymal Stromal Cells – A heterogeneous population of cultured cells with similar characteristics such as the ability to adhere to plastic and the expression of specific marker proteins.
- Mesenchymal Stem Cells – A subpopulation of mesenchymal stromal cells that have the capacity to self-renew and differentiate into mesodermal lineages when cultured in vitro. The capacity to self-renew and differentiate in vivo has yet to be clearly demonstrated for mesenchymal stem cells.
References
- Dominici, M. et al. (2006) Cytotherapy 8:315.
- Keating, A. (2012) Cell Stem Cell 10:709.
The term 'mesenchymal stem cells' (MSCs) is most commonly used to describe multipotent self-renewing cells that can be differentiated in vitro to generate adipocytes, chondrocytes, and osteoblasts. However, because these biological properties and hierarchical relationships remain to be clearly demonstrated in vivo, the term 'multipotent mesenchymal stromal cells' is often used to distinguish cultured cells from their in vivo precursors. Originally discovered in mouse bone marrow, multipotent mesenchymal stromal cells cultured from a variety of species and tissue types, have been shown to differentiate into progeny of additional lineages including, cardiomyocytes, endothelial cells, hepatocytes, and neural cells. Again, the physiological relevance of these findings remains to be determined.