Skip to main content

Human GDF-9 Antibody

R&D Systems, part of Bio-Techne | Catalog # MAB8266

R&D Systems, part of Bio-Techne

Key Product Details

Species Reactivity

Human

Applications

CyTOF-ready, Flow Cytometry, Immunocytochemistry

Label

Unconjugated

Antibody Source

Monoclonal Mouse IgG2B Clone # 917319

Product Specifications

Immunogen

Human embryonic kidney cell line derived recombinant human GDF-9
Met1-Arg454
Accession # O60383

Specificity

Detects human GDF-9 in direct ELISAs.

Clonality

Monoclonal

Host

Mouse

Isotype

IgG2B

Scientific Data Images for Human GDF-9 Antibody

Detection of GDF-9 antibody in OVCAR-3 Human Cell Line antibody by Flow Cytometry.

Detection of GDF-9 in OVCAR-3 Human Cell Line by Flow Cytometry.

OVCAR-3 human ovarian carcinoma cell line was stained with Mouse Anti-Human GDF-9 Monoclonal Antibody (Catalog # MAB8266, filled histogram) or isotype control antibody (Catalog # MAB0041, open histogram), followed by Allophycocyanin-conjugated Anti-Mouse IgG Secondary Antibody (Catalog # F0101B). To facilitate intracellular staining, cells were fixed with Flow Cytometry Fixation Buffer (Catalog # FC004) and permeabilized with Flow Cytometry Permeabilization/Wash Buffer I (Catalog # FC005).
GDF-9 antibody in OVCAR-3 Human Cell Line by Immunocytochemistry (ICC).

GDF‑9 in OVCAR‑3 Human Cell Line.

GDF-9 was detected in immersion fixed OVCAR-3 human ovarian carcinoma cell line using Mouse Anti-Human GDF-9 Monoclonal Antibody (Catalog # MAB8266) at 10 µg/mL for 3 hours at room temperature. Cells were stained using the NorthernLights™ 557-conjugated Anti-Mouse IgG Secondary Antibody (red; Catalog # NL007) and counterstained with DAPI (blue). Specific staining was localized to secreted molecule. View our protocol for Fluorescent ICC Staining of Cells on Coverslips.

Applications for Human GDF-9 Antibody

Application
Recommended Usage

CyTOF-ready

Ready to be labeled using established conjugation methods. No BSA or other carrier proteins that could interfere with conjugation.

Flow Cytometry

0.25 µg/106 cells
Sample: OVCAR‑3 human ovarian carcinoma cell line fixed with Flow Cytometry Fixation Buffer (Catalog # FC004) and permeabilized with Flow Cytometry Permeabilization/Wash Buffer I (Catalog # FC005).

Immunocytochemistry

8-25 µg/mL
Sample: Immersion fixed OVCAR‑3  human ovarian carcinoma cell line

Formulation, Preparation, and Storage

Purification

Protein A or G purified from hybridoma culture supernatant

Reconstitution

Reconstitute at 0.5 mg/mL in sterile PBS. For liquid material, refer to CoA for concentration.

Reconstitution Buffer Available:
Size / Price
Qty
Loading...

Formulation

Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. *Small pack size (SP) is supplied either lyophilized or as a 0.2 µm filtered solution in PBS.

Shipping

Lyophilized product is shipped at ambient temperature. Liquid small pack size (-SP) is shipped with polar packs. Upon receipt, store immediately at the temperature recommended below.

Stability & Storage

Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 6 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: GDF-9

Growth Differentiation Factor-9 (GDF-9) is an oocyte secreted paracrine factor in the TGF-beta superfamily (1, 2). It is synthesized as a prepropeptide and is subsequently processed by proteases into the mature protein (1, 2). Mature human GDF-9 has a predicted molecular weight of 16 kDa and shares 89.6% and 91.9% amino acid sequence identity with the mouse and rat orthologs, respectively. Despite the high homology, mouse GDF-9 is secreted in an active form, while human GDF-9 is latent. A single mutation Gly391Arg increases the affinity between human GDF-9 and its signaling receptors and make it more active (3). It forms both non-covalent homodimers and heterodimers with BMP-15, which is coordinately expressed with GDF-9 in the oocyte. (2, 4, 5). GDF-9 signals through TGF-beta RI/ALK-5 and BMPR-II, while the GDF-9:BMP-15 heterodimer is believed to signal through BMPR-II, ALK 4/5/7, and BMPR-IB/ALK-6 (5-8). SMAD2 and SMAD3 are phosphorylated following activation of receptor complexes by GDF-9 (5, 6). GDF-9 functions as a paracrine factor in the development of primary follicles in the ovary. It is critical for the growth of granulosa and theca cells and for the differentiation and maturation of the oocyte (5, 9-11). GDF-9 is thought to act synergistically with BMP-15 to control development of the oocyte-cumulus cell complex (4-6). In humans, GDF-9:BMP-15 heterodimers have been shown to be more potent regulators of granulosa cell functions compared to GDF-9 homodimers (6). Aberrant GDF-9 expression and activation is associated with a multitude of common human ovarian disorders including premature ovarian failure and polycystic ovary syndrome (10, 12-14). In breast and bladder cancers, GDF-9 is believed to function as a tumor suppressor because its expression levels are inversely correlated with the aggressiveness of the cancer (15, 16). In prostate cancer, however, GDF-9 may enhance tumor progression by promoting tumor cell growth and epithelial-to-mesenchymal transition (17, 18).

References

  1. McGrath, S. A. et al. (1995) Mol. Endocrinol. 9:131.
  2. Aaltonen, J. et al. (1999) J. Clin. Endocrinol. Metab. 84:2744.
  3. Simpson, C.M. et al. (2012) 153:1301.
  4. Liao, W.X. et al. (2003) J. Biol. Chem. 278:3713.
  5. Gilchrist, R.B. et al. (2008) Hum. Reprod. Update 14:159.
  6. Peng, J. et al. (2013) Proc. Natl. Acad. Sci. USA 110:E776.
  7. Vitt, U.A. et al. (2002) Biol. Reprod. 67:473.
  8. Mazerbourg, S. et al. (2004) Mol. Endocrinol. 18:653.
  9. Hreinsson, J.G. et al. (2002) J. Clin. Endocrinol. Metab. 87:316.
  10. Otsuka, F. et al. (2011) Mol. Reprod. Dev. 78:9.
  11. Dong, J. et al. (1996) Nature 383:531.
  12. Zhao, S.Y. et al. (2010) Fertil. Steril. 94:261.
  13. Wei, L.N. et al. (2011) Fertil. Steril. 96:464.
  14. Simpson, C.M. et al. (2014) J. Clin. Endocrinol. Metab. [Epub ahead of print].
  15. Hanavadi, S. et al. (2007) Ann. Surg. Oncol. 14:2159.
  16. Du, P. et al. (2012) Int. J. Mol. Med. 29:428.
  17. Bokobza, S.M. et al. (2010) J. Cell. Physiol. 225:529.
  18. Bokobza, S.M. et al. (2011) Mol. Cell. Biochem. 349:33.

Long Name

Growth Differentiation Factor 9

Alternate Names

GDF9

Entrez Gene IDs

2661 (Human); 14566 (Mouse)

Gene Symbol

GDF9

UniProt

Additional GDF-9 Products

Product Documents for Human GDF-9 Antibody

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Human GDF-9 Antibody

For research use only

Loading...
Loading...
Loading...
Loading...
Loading...